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THE SPACE L2(S)

Let w be a positive measure on S C R and consider the space of
functions L2 (8S) with the inner product

(8 = /S F(x)(x)dw(x)

Examples
[e]e]e]elelele]e]

We say that f € L2(S) if (f,f), = ||f]? < oc.
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THE SPACE L2(S)

Let w be a positive measure on S C R and consider the space of
functions L2 (8S) with the inner product

() = /S F(x)(x)dw(x)

We say that f € L2(S) if (f,f), = ||f]? < oc.

S can be a continuous interval, a discrete set of points or a combination
of both. The discrete component of the measure is usually written as

N
wd(x) = Zaxdtx, by -+ by € R
x=0



Introduction Methodology Examples
@0000000 00000000 [e]e]e]elelele]e]

THE SPACE L2(S)

Let w be a positive measure on S C R and consider the space of
functions L2 (8S) with the inner product

() = /S F(x)(x)dw(x)

We say that f € L2(S) if (f,f), = ||f]? < oc.

S can be a continuous interval, a discrete set of points or a combination
of both. The discrete component of the measure is usually written as

:Zax5tx, tXO,...,tXNER

In that case the inner product can be thought of as

Z o [ F(g05. = Y- (2. )es,)
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ORTHOGONAL POLYNOMIALS

A system of polynomials (pn)n = {po(x), p1(x), ...} with deg(p,) = n
is orthogonal in L2(S) if (Gramm-Schmidt)

(Prs D)oo = / Po(3)Pm(X)dw(x) = |Pol26sm, 1, m > 0
S
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ORTHOGONAL POLYNOMIALS

A system of polynomials (pn)n = {po(x), p1(x), ...} with deg(p,) = n
is orthogonal in L2(S) if (Gramm-Schmidt)

(Prs D)oo = / Po(3)Pm(X)dw(x) = |Pol26sm, 1, m > 0
S

Every family of OP’s (p,)n satisfy a three-term recurrence relation

XPn(X) = ant1Pnt1(X) + bppn(x) + copr-1(x), n>1 J

where ap, ¢, # 0, by, € R and po(x) =1, p_1(x) = 0.
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ORTHOGONAL POLYNOMIALS

A system of polynomials (pn)n = {po(x), p1(x), ...} with deg(p,) = n
is orthogonal in L2(S) if (Gramm-Schmidt)

(Prs D)oo = / Po(3)Pm(X)dw(x) = |Pol26sm, 1, m > 0
S

Every family of OP’s (p,)n satisfy a three-term recurrence relation

XPn(X) = ant1Pnt1(X) + bppn(x) + copr-1(x), n>1 J

where ap, ¢, # 0, by, € R and po(x) =1, p_1(x) = 0.
Jacobi operator (tridiagonal):

bo a1 po(x) po(x)
a b a p1(x)
Jp= o b a pa(x) | =X | pa(x) [ =% X €S
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ORTHOGONAL POLYNOMIALS

A system of polynomials (pn)n = {po(x), p1(x), ...} with deg(p,) = n
is orthogonal in L2(S) if (Gramm-Schmidt)

(Prs D)oo = / Po(3)Pm(X)dw(x) = |Pol26sm, 1, m > 0
S

Every family of OP’s (p,)n satisfy a three-term recurrence relation

XPn(X) = ant1Pnt1(X) + bppn(x) + copr-1(x), n>1 J

where ap, ¢, # 0, by, € R and po(x) =1, p_1(x) = 0.
Jacobi operator (tridiagonal):

by ai Po(x) Po(x)
a b a p1(x) pi(x)
Jp= o b a pa(x) | =X | pa(x) [ =% X €S

The converse result is also true (Favard's or spectral theorem)
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CLASSICAL FAMILIES (CONTINUOUS CASE)

BOCHNER PROBLEM, 1929

d? d
J(X)an(x) + T(X)apn(X) +Anpn(x) =0, x€SCR

dego <2, degr=1
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CLASSICAL FAMILIES (CONTINUOUS CASE)

BOCHNER PROBLEM, 1929

d? d
J(X)an(x) + T(X)apn(X) +Anpn(x) =0, x€SCR

dego <2, degr=1

@ Hermite (Normal, Gaussian): w(x) = e ™, x € R

Ha(x)" — 2xH,(x)" = —2nH,(x) J
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CLASSICAL FAMILIES (CONTINUOUS CASE)

BOCHNER PROBLEM, 1929

d? d
J(X)an(x) + T(X)apn(X) +Anpn(x) =0, x€SCR

dego <2, degr=1

@ Hermite (Normal, Gaussian): w(x) = e ™, x € R

Ha(x)" — 2xH,(x)" = —2nH,(x) J

@ Laguerre (Gamma, Exponential): w(x) = x“e ™, x >0, a > —1

M) + (o + 1= x)L3(x) = —nLg(x) J
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CLASSICAL FAMILIES (CONTINUOUS CASE)

BOCHNER PROBLEM, 1929

d? d
J(X)an(x) + T(X)apn(X) +Anpn(x) =0, x€SCR

dego <2, degr=1

@ Hermite (Normal, Gaussian): w(x) = e ™, x € R

Ha(x)" — 2xH,(x)" = —2nH,(x) J

@ Laguerre (Gamma, Exponential): w(x) = x“e ™, x >0, a > —1

M) + (o + 1= x)L3(x) = —nLg(x) J

@ Jacobi (Beta, Uniform): w(x) = x%(1 — x)?, x € (0,1), a, 3 > —1
X(1 =PI + (01— (o B+ 2)POAx) =
—n(n+a+ B+1)P*P(x) J
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CLASSICAL FAMILIES (DISCRETE CASE)
If we set
Af(x) =f(x+1)—f(x), Vf(x)="Ff(x)—Ff(x—-1)

the classification problem is to find discrete OP’s (pp)n

0(x)AVpp(x) + 7(x)Apn(x) + Appn(x) =0, xe€SCN
dego <2, degr =1

In other words, if we call the shift operator
5;f(x) = f(x+))
the difference equation reads
[o(x) + 7(x)]S1Pn(x) — [20(x) + 7(x)]S0pn(X)
+ o (x)S_1pn(x) + Anpn(x) =0, xeSCN

Examples
[e]e]e]elelele]e]



CLASSICAL FAMILIES (DISCRETE CASE)

@ Charlier (Poisson):

wa(x) = Z i—)!(éx, a>0
x=0
aci(x +1) — (x+ a)cp(x) + xci(x — 1) = —ncy(x) J

. = = A
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CLASSICAL FAMILIES (DISCRETE CASE)

@ Charlier (Poisson):

[ee]) X

wa(x) = Z %&(, a>0

x=0

aci(x+1) — (x + a)ci(x) + xci(x — 1) = —nc;(x)

@ Meixner (Pascal, Geometric):

Wacx) =" (c)«a 5y, 0<a<1l, ¢>0

x|
x=0

()j=i(i+1)---(i+j— 1) is the Pochhammer symbol

alx +e)mp(x +1) = (x + a(x + ¢))my(x)

+ xm>°(x — 1) = n(a — 1)m°(x)
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CLASSICAL FAMILIES (DISCRETE CASE)

@ Krawtchuok (Binomial, Bernoulli):
N

N
wp.n(x) = Z <X)px(1 — p)N_X5X, O<p<l1

x=0

PN = X)kEM(x + 1)~ [p(N — x) + x(1 — P)IkEM(x)
x(1— p)REN(x — 1) = —nkEN(x)

Examples
[e]e]e]elelele]e]
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CLASSICAL FAMILIES (DISCRETE CASE)

@ Krawtchuok (Binomial, Bernoulli):
N

wp.n(x) = Z (l)\:) p*(1-p)N=5, 0<p<1
x=0
PN = x)k" (x + 1)=[p(N = x) + x(1 = p)IkE"(x)
x(1 = P)KEM(x — 1) = — kP (x) ’

@ Hahn (Hypergeometric):

N
wu;@N(X)_Z(a—’—X) <ﬁ—;\_/7;x>5m a7ﬂ>_1vayﬂ<_N

x=0 X

B(x) Q7" (x + 1)=[B(x) + D()] Q7" (x)
D(x)QPN(x —1)=n(n+a+ B+ 1)Q,?’5’N(X)J

where B(x) = (x + a+ 1)(x — N) and D(x) = x(x = 8 — N —1).
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KRALL POLYNOMIALS (CONTINUOUS CASE)

GOAL (Krall, 1939): find families of OP’s (g,)» which are also

eigenfunctions of a higher-order differential operator of the form
2m d” )

D, = hj(X)W7 deg(hj) <j = Dcqn) = A

Examples
[e]e]e]elelele]e]
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KRALL POLYNOMIALS (CONTINUOUS CASE)

GOAL (Krall, 1939): find families of OP’s (g,)» which are also

eigenfunctions of a higher-order differential operator of the form
2m d”

De=) hi(x)—, deg(h) <j = Dc(dn) =Andn

Jj=0

Littlejohn, Griinbaum, Heine, lliev, Koekoek's, Lesky, Bavinck, van
Haeringen, Horozov, Koornwinder, etc (80's, 90's, 00's).
Common techniques: ad-conditions, Darboux process, etc.

Examples
[e]e]e]elelele]e]
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KRALL POLYNOMIALS (CONTINUOUS CASE)

GOAL (Krall, 1939): find families of OP’s (g,)» which are also
eigenfunctions of a higher-order differential operator of the form

2m g
a’ .
De=) hi(x)—, deg(h) <j = Dc(dn) =Andn

Jj=0

Littlejohn, Griinbaum, Heine, lliev, Koekoek's, Lesky, Bavinck, van
Haeringen, Horozov, Koornwinder, etc (80's, 90's, 00's).
Common techniques: ad-conditions, Darboux process, etc.

(gn)n are typically orthogonal with respect to the measure
m—1
w(x) = Z ajdifo), aeR
j=0

where w is a (modified) classical weight and xg is an endpoint of the
support of orthogonality of w.
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

Dy= Y hj(x)8;, hs,h_s#0, = Dy(qn) = AnGn

j=—s
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

j=—s

Dy= Y hj(x)8;, hs,h_s#0, = Dy(qn) = AnGn J

The same techniques of adding deltas does not work for the discrete case.

Surprisingly, it has not been until very recently (Durdn, 2012) when the
first examples appeared (D-operators).
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KRALL POLYNOMIALS (DISCRETE CASE)

The same question arise in the discrete setting, i.e. find families of OP’s
(gn)n which are also eigenfunctions of a higher order difference operator

Dy= Y hj(x)8;, hs,h_s#0, = Dy(qn) = AnGn J

j=—s

The same techniques of adding deltas does not work for the discrete case.

Surprisingly, it has not been until very recently (Durdn, 2012) when the
first examples appeared (D-operators).

(gn)n are typically orthogonal with respect to the measure
W) = T](x = wx)
feF

where w is a discrete classical weight and F is a finite set of numbers.
This is also called a Christoffel transform of w.
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a
family of polynomials such that there exists D, € A with Dy(pn) = nps.
Given a sequence of numbers (£,,),, let us consider the operator

n
D(pn) = Z(_l)j+15n ©* €n—jPn—j = €nPn—1 — En€n—1Pn—2 + -
=1

We say that D is an D-operator associated with A and (p,), if D € A.
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a
family of polynomials such that there exists D, € A with Dy(pn) = nps.
Given a sequence of numbers (£,,),, let us consider the operator

n
D(pn) = Z(_l)j+15n ©* €n—jPn—j = €nPn—1 — En€n—1Pn—2 + -
=1

We say that D is an D-operator associated with A and (p,), if D € A.

d
@ Laguerre: e =—-1=D = —.
dx
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a
family of polynomials such that there exists D, € A with Dy(pn) = nps.
Given a sequence of numbers (£,,),, let us consider the operator

n
D(pn) = Z(_l)j+15n ©* €n—jPn—j = €nPn—1 — En€n—1Pn—2 + -
=1

We say that D is an D-operator associated with A and (p,), if D € A.

d
@ Laguerre: e =—-1=D = —.
dx

@ Charlier: e,=1=D=V.
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a
family of polynomials such that there exists D, € A with Dy(pn) = nps.
Given a sequence of numbers (£,,),, let us consider the operator

n
D(pn) = Z(_l)j+15n ©* €n—jPn—j = €nPn—1 — En€n—1Pn—2 + -
=1

We say that D is an D-operator associated with A and (p,), if D € A.

@ Laguerre: e =—-1=D = —.
dx

@ Charlier: e,=1=D=V.

@ Meixner: 1 1
1 a 2
En 1-— 171, En 1—a 27132
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D-OPERATORS

Let A be an algebra of (differential or difference) operators and (p,), a

family of polynomials such that there exists D, € A with Dy(pn) = nps.

Given a sequence of numbers (£,,),, let us consider the operator

n
D(pn) = Z(_l)j+15n ©* €n—jPn—j = €nPn—1 — En€n—1Pn—2 + -
=1

Examples
[e]e]e]elelele]e]

We say that D is an D-operator associated with A and (p,), if D € A.

d
@ Laguerre: e =—-1=D = —.

dx

@ Charlier: e,=1=D=V.
@ Meixner: 1 1

1 a a 2

= = D; = A, = = =—V.
En 1—a 171, En 1—a 27132
@ Krawtchouk:

el=—— =D = L v, 2=——2 _p,——_2 A
" 1-—a T T 1, 2T 14
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D-OPERATORS

THEOREM (DURAN, 2013)

Let A, (pn)n, Dp(pPn) = npn, (€n)n and D.
For an arbitrary polynomial R such that R(n) # 0, n > 0, we define a
new polynomial P by

P(x) — P(x — 1) = R(x)
and a sequence of polynomials (g,), by go = 1 and

Gn = Pn+ Bapa—1, n=>1
where the numbers (§,, n > 0, are given by

03) n>1

Bn :ﬁnm7 Z

Then there exist D, € A sucht that Dg(q,) = P(n)q, where

Dq = P(Dp) + DR(DP)



D-OPERATORS

GOAL: Extend the previous Theorem for the case that we consider a
linear combination of m + 1 consecutive p,'s:

dn = Pn+ /Bn,lpn—l + ,Bn,2pn—2 +---+ ﬁn,mpn—m

DA
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D-OPERATORS

GOAL: Extend the previous Theorem for the case that we consider a
linear combination of m 4 1 consecutive p,’s:

n = Pn + ﬁn,lpn—l + ﬂn,2pn—2 +--+ ﬁn,mpn—m J

Let Ri, Rs, ..., R, be m arbitrary polynomials and m D-operators
D1, Dy, ..., D defined by the sequences (f),, h=1,..., m.
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D-OPERATORS

GOAL: Extend the previous Theorem for the case that we consider a
linear combination of m 4 1 consecutive p,’s:

n = Pn + ﬁn,lpn—l + ﬂn,2pn—2 +--+ ﬁn,mpn—m J

Let Ri, Rs, ..., R, be m arbitrary polynomials and m D-operators
D1, Dy, ..., D defined by the sequences (f),, h=1,..., m.

Define the auxiliary functions & ; by
h h_h h
fn,i =Ep€n—1" " En—it1
and assume that the following Casorati determinant never vanish (n > 0)
5,11—1,m—1R1(” -1) 5111—2,m—2R1(” =2) -+ Ri(n—m)

Q(n) = ; ; w1 |#0
f;nfl,mflRm(n -1) f,',",z)m,sz(n =2) -+ Rm(n—m)
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D-OPERATORS

Now consider the sequence of polynomials (gn), defined by

Pn(x) —Pn—1(x) o (=1)"pn—m(x)
mRi(n) & 4 Ri(n=1) - Ri(n—m)
dn(x) = : : :
EnmRm(n) &Ly maRm(n—1) -+ Rm(n—m)

Observation: g, is a linear combination of of m + 1 consecutive p,'s.
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D-OPERATORS

Now consider the sequence of polynomials (gn), defined by

Pn(x) —Pn-1(x) o (=1)"pn—m(x)
EamRi(n) &y, Ri(n=1) -~ Ri(n—m)
Gn(x) = : : °, :
EnmRm(n) &Ly maRm(n—1) -+ Rm(n—m)
Observation: g, is a linear combination of of m + 1 consecutive p,'s.
Define for h=1,..., m, the following functions
Mh(x) = Z(_l)h—wg:,mfj det (£)I<+jfr,mer/(X +J- r)){ I#h }
J=1 r#j

Observation: M, are linear combinations of adjoint determinants of Q(x).
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D-OPERATORS

Now consider the sequence of polynomials (gn), defined by

Pn(x) —Pn-1(x) o (=1)"pn—m(x)
EamRi(n) &y, Ri(n=1) -~ Ri(n—m)
Gn(x) = : : °, :
EnmRm(n) &Ly maRm(n—1) -+ Rm(n—m)
Observation: g, is a linear combination of of m + 1 consecutive p,'s.
Define for h=1,..., m, the following functions
Mh(x) = Z(_l)h—wg:,mfj det (f)l<+jfr7mer/(X +J- r)){ I#h }
J=1 r#j

Observation: M, are linear combinations of adjoint determinants of Q(x).
If we assume that Q(x) and Mj(x) are polynomials in x, then 3 D, € A
with Dg(gn) = P(n)gn and P(x) — P(x — 1) = Q(x), where

Dq = P(Dp) + Y Mh(Dp)DiRi(Dp) J
h=1



GOAL: Make (gn)n bispectral (we already have Dy(gn) = Angn).

For that we have to make an appropriate choice of the
polynomials Ry, R», ..., Ry. This choice is based on the following

Cn !
en1ani1RI(n+1) — bR (n) + = - Rf(n—1) = (nnj+ kn)R/(n), ne€Z
where 1, and rj, are real numbers independent of n and J, (an)nez,

(bn)nez, (cn)nez are the coefficients in the TTRR for the OP's (p,)a,
and (e"), defines a D-operator for (p,),.

Classical discrete family | D-operators R;(x)

Charlier: ¢3, n>0 \% ¢ (—x-1),j=>0

Meixner: m2<, n> 0 TSA 1132 “(—x—-1),j>0
Y m*(—x—1),j>0

Krawtchouk: k2N, n >0 1—1; kja‘f (=x—=1),j>0
—a 1/a,—N .
=T k2 N(—x-1),j>0

f2ac
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CHOICE OF Ry, Ry, ..., Ry,

GOAL: Make (qn)n bispectral (we already have Dq(gn) = Angn).

For that we have to make an appropriate choice of the arbitrary
polynomials Ry, Ry, ..., Ry. This choice is based on the following
recurrence formula (h=1,...,m):

Cn .
5Z+1a,,+1th(n+ 1)— b,,th(n) 4 gth(n —1) = (nnj + nh)th(n), nez

n

where 7, and kp, are real numbers independent of n and j, (ap)nez,
(bn)nez: (cn)nez are the coefficients in the TTRR for the OP’s (p,)n,
and (¢h),, defines a D-operator for (p,)n.
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CHOICE OF Ry, Ry, ..., Ry,

GOAL: Make (qn)n bispectral (we already have Dq(gn) = Angn).

For that we have to make an appropriate choice of the arbitrary
polynomials Ry, Ry, ..., Ry. This choice is based on the following
recurrence formula (h=1,...,m):

Cn .
5Z+1a,,+1th(n +1)— b,,th(n) + ERJ-"(n —1) = (nnj + /ih)th(n), ne ZJ
where 7, and kp, are real numbers independent of n and j, (ap)nez,

(bn)nez: (¢n)nez are the coefficients in the TTRR for the OP’s (p,)n,
and (¢h),, defines a D-operator for (p,)n.

Classical discrete family | D-operators R;(x)
Charlier: ¢3, n>0 \Y ¢ °(=x-1),j>0
Meixner: m2:€, n > 0 A m} 27276(—X —-1),j>0
liaV mf’z_c( x—1),j>0
Krawtchouk: k2N, n >0 =V kK "(—x-1),j>0
—a 1/a,—N .
i k" N x—1),j>0




Given a set G of m positive integers, G = {g1,...,8m}, call
G ={&1,...,&m} where &, = nngh + kin.

We then define the sequence of polynomials (¢¢), by

. pn()1<) 7pn71(x) o (71)mpnfm(x)
G gn.ngl(n) 5,1771.,7771/?;(” o 1) o Rgl'l(n o m)
9, (x) = . . .
érTm g,,(”) érTfl‘mflejy(n o 1) - joy(n o ITI)
Let pz(x) = H}il(x —&). (%), are w.r.t. a measure & if
"¢ aRL(n)
. - Sn,n+1"g;
@, po) = (~1)cc S o let - p>0, co#0
)= (W' ) R D)
" Rg,(n)
= — - , 1-m<n<0
; p(&i)Ely _n1RE(—1)

=1 "G i i Dac
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CHOICE OF Ry, Ry, ..., Ry,

Given a set G of m positive integers, G = {g1,...,8m}, call
G ={&,...,8n} where gy = nngh + kn.

We then define the sequence of polynomials (g¢), by

Pn(x) —Pn-1(X) o (1) pa—m(x)
"ngll( ) I%—l.m—lRél(n_ 1) R;l(n— m)
gy (x) = _ m } |
mmRan(n) &g mo1Rg (n—=1) .- Ry (n— m)
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CHOICE OF Ry, Ry, ..., Ry,

Given a set G of m positive integers, G = {g1,...,8m}, call
G ={&,...,8n} where gy = nngh + kn.

We then define the sequence of polynomials (g¢), by

Pn(x) —Pn-1(X) o (1) pa—m(x)
"ng11( ) r%—l.m—lRél(n_ 1) R;l(n— m)
gy (x) = _ m } |
mmRan(n) &g mo1Rg (n—=1) .- Ry (n— m)

Let pa(x) = HJm 21— g1)- (qff) are orthogonal w.r.t. a measure & if

< CGZ nn+1 ) nZO, CG#O

)’
mw
0= & . ., 1-m<n<0
Z; p/(”;(gi)g’_l,—n—lRé,-(_l)

m Ri(~m)
°¢Zp<xumﬁ<n

8i




IDENTIFYING THE MEASURE @

@ will be identified by the Christoffel transform of w

wF(x) = [T = F) wix)

feF

DA
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IDENTIFYING THE MEASURE @

@ will be identified by the Christoffel transform of w

wf(x) = H(X — f) w(x)

feF

Examples
[e]e]e]elelele]e]

The set G will be closely related with the set F.

In fact G will be identified by one of the following sets:

I(F)={1,2,....fi} \ {f — f,f € F},
J(F)=10,1,2,... . i+ h—1}\{f —1,f € F}, h>1

where fy = max F and k = #(F).
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IDENTIFYING THE MEASURE @

@ will be identified by the Christoffel transform of w

wf(x) = H(X — f) w(x)

feF

The set G will be closely related with the set F.
In fact G will be identified by one of the following sets:
I(F)={1,2,..., i} \{fk = f,f € F},
Jn(F)={0,1,2,...., i + h=1}\{f =-1,f € F}, h>1

where fy = max F and k = #(F).
For the transformation /, the bigger the holes in F (with respect to the
set {1,2,...,fc}), the bigger the set /(F):

{1,2,3,.... k) = [k}, I({1,k}) ={L1.2,....k—2,k}
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IDENTIFYING THE MEASURE @W: EXAMPLE

Imagine we have a discrete classical weight w supported on {0,1,2,...}

[ 4 \ 4 L 4 L 4 L 4 L L w
0 1 2 3 4 5 6

Let F = {1,4,6} and consider the discrete weight w’ given by

W) = T~ A () = (x — Dx — 4)(x — 6) w(x)

feF

The new discrete weight w’ will be supported on {0,2,3,5,7...}

[ 4 © b L4 © @ © w
0 1 2 3 4 5 6
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IDENTIFYING THE MEASURE @W: EXAMPLE

Imagine we have a discrete classical weight w supported on {0,1,2,..
[ 4 L 4 L 4 L 4 L 4 L 4 L 4
0 1 2 3 4 5 6

Let F = {1,4,6} and consider the discrete weight w’ given by

W) = T~ A () = (x — Dx — 4)(x — 6) w(x)

feF

The new discrete weight w’ will be supported on {0,2,3,5,7...

}

}

[ 4 © b L4 © L4
0 1 2 3 4 5

The set of indexes G we have to take to construct the orthogona
polynomials (g¢), with respect to @ = w’ will be given by

G=1I(F)={1,2,3,4,5,6}\ {5,2,0} = {1,3,4,6}

6

Examples
[e]e]e]elelele]e]
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CHARLIER POLYNOMIALS

Let F C N be finite and consider G = I(F) = {g1,...,8&m}-
Let w, be the Charlier measure and (c2), its sequence of OP’s. Assume
that Qg(n) = det (c;2(—n—j — 1)),”}:1 #0.
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CHARLIER POLYNOMIALS

Let F C N be finite and consider G = I(F) = {g1,...,8&m}-

Let w, be the Charlier measure and (c2), its sequence of OP’s. Assume
that Qg(n) = det (c;2(—n—j — 1)),”}:1 #0.

If we define (gn)n by ’

¢n(x) () e (217 (x)
?(=n=1) c;2(=n) - c(=n+m-1)
an(x) = : : :
g i(=n=1) ¢ 2(=n) - c(=n+m-1)

then the polynomials (g,), are orthogonal with respect to the measure

wh = H(X— fwa

feF

and they are eigenfunctions of a higher order difference operator D, with

—s:r:Zf—ik(k_l)—f—l, k = #(F)
feF 2
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MEIXNER POLYNOMIALS

In this case have two different D-operators. That means that we will
have to consider two sets of positive integers F;, F, C N.
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MEIXNER POLYNOMIALS

In this case have two different D-operators. That means that we will

have to consider two sets of positive integers F;, F, C N.

Consider H = Jp(F1) = {h1, ..., hm, } and K = I(F2) = {ki, ...

Assume that

m,171/a’2_c(—n) e m,171/a’2_c(—n +m—1)

m}l,f’zic(—n) . m})ﬁf’zfc(—.n +m-—1)

QLK (n) = mi;;j_(l—n) e ntmo1)
my2 < (-n)

a,2—c
pro) ceomy (=n+m-1)

7km2}'

Define m = my + my and consider the Meixner polynomials (m?:€),.

£0

Examples
0@000000!
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MEIXNER POLYNOMIALS

If we define (gn)n by
(1—a)"my°(x)

am
1/a,2—
mhl/a “(—n—1)

1/a2 c( n—l)

hm
qn(x) =
32 C( = )
aITI
a2 C( n—l)
am

then the polynomials (g,), are eigenfunctions of a higher order difference
operator D, and they are orthogonal with respect to the measure

wf}C’FZ = H(x+c+ f) H(x— fwa,c

fekr

feFk

mhml’ " (=n+m-=1)

Examples
00@00000

(=1)mmp<,(x)

;1/32 (- n+m—1)

1/a,2—c

a2 C( n+m_1)

a2 C( n+m_1)
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KRAWTCHOUK POLYNOMIALS

Again, for F1, F, C N consider K = I(Fy) = {k,
H = Jh(Fz) = {hl,. . .,hml} with m = my + mo.

ooy km,} and

Examples
[e]e]e] Jolelele]
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KRAWTCHOUK POLYNOMIALS

Again, for F1, F, C N consider K = I(Fy) = {ki, ...
H = Jy(F2) = {hy,...
If we define (gn)n by

qn(x)

then the polynomials (gn), are eigenfunctions of a higher order difference
operator D, and orthogonal with respect to the measure

s hmy + with m = my + ma.

(1+a)mki" (x)

g —(1+a)" 2N (x)
kzl’_ (=n—1)

ka N( n)

ki "’( n—1)

ka N( n)
(- a)mk”"’ Y(-n-1)

(—a)™~ lklf"’ " (~n)

(a2 M (—n—1) (—a)m ikl (=n)

F1,F>

Wy = H(x—f)H(N—l—f—x)wa,N

ferR feR

, kmy } and

Examples
000@0000!

(=)™ k(%)
kil’_N(—n +m—1)

kafN( n+m—1)
my
kl/a N( n+m—1)

l/a —N

(- .n+m—1)
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LAGUERRE POLYNOMIALS

Form>1,let M = (M;,j)ft};h be any m x m matrix. Fora Zm—-1,m—2,...,

consider the discrete Laguerre-Sobolev bilinear form defined by
. q(0)
(p.a) = [ pLOGCX" e (p(0). PV OM |
0 (m—1)
g™ 7(0)
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LAGUERRE POLYNOMIALS

Form>1, let M = (M ;)"0 b be any m x m matrix. For a # m—1,m—2,.
consider the discrete Laguerre-Sobolev bilinear form defined by

. q(0)
(pa) = [ pL)a(x e a4 (p(0) o p "I OIM |
i 9(0)
Then the family (¢.)n defined by
L7 (x) -1(x) e Lm(X)
Ri(n) Ri(n—1) -+ Ri(n—m)
q”(X) = : : - : ’ n Z 0
Rm(n) Rm(n—1) -+ Rm(n—m)

is orthogonal with respect to the discrete Laguerre-Sobolev bilinear form, as
long as Q(n) = det(Ri(n —j))7j=1 # 0,n > 0, where

CTa—m+1) Ma+14x) T2 (- l\/l,l, N
Ri(x) = S Gt D (=) S E Z (a+ — —/+1),J

Observation: Ri(x), ..., Rm(x) are not polynomials in_general.
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LAGUERRE POLYNOMIALS

Let (Ly)n be the family of Laguerre polynomials and D, the corresponding
second-order differential equation such that D,(L;) = nLj.
Assume that « is a positive integer with o« > m.

Examples
00000@00
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LAGUERRE POLYNOMIALS

Let (Ly)n be the family of Laguerre polynomials and D, the corresponding
second-order differential equation such that D,(L;) = nLj.

Assume that « is a positive integer with o« > m.

Then there exists a differential operator D of the form

D, = P(D,) +ZMh(D d —Ra(Dp),
such that Dq(gn) = P(n)gn where
P(x) — P(x — 1) = Q(x)

and the polynomials M,(x),h =1,..., m are defined by

Ma(x) =3 (=1)"" det (Ry(x +j — r)) { I#h }
j=1 r#j

%(X'ﬂ)m 1+(I=1)(x+1 amz:( M/ L (it 1),

i=0

R/(X) =
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LAGUERRE POLYNOMIALS

Moreover, the minimal order of the differential operator Dy having the
orthogonal polynomials (g»)» as eigenfunctions is at most 2(a-wr(M) + 1)
where a-wr(M) is the a-weighted rank of the matrix M, given by

a-wr(M) = Z nj + Z mj —

The indexes n; and m; are related with how singular are the columns and the
rows of the matrix M.

m(m — 1)
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LAGUERRE POLYNOMIALS

Moreover, the minimal order of the differential operator Dy having the
orthogonal polynomials (g»)» as eigenfunctions is at most 2(a-wr(M) + 1)
where a-wr(M) is the a-weighted rank of the matrix M, given by

a-wr(M) = Z nj + Z mj —

The indexes n; and m; are related with how singular are the columns and the
rows of the matrix M. )

m(m—1)

@ When M = (M,-,J-)Z._:f) is the symmetric matrix with entries M;; = a;1; for
i+j<m-—1and M;; =0 for i +j > m — 1, the discrete Laguerre
Sobolev inner product reduces

m—1
x*Me ™ Z aisl",  a-wr(M) = ma
i=0
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LAGUERRE POLYNOMIALS

Moreover, the minimal order of the differential operator Dy having the
orthogonal polynomials (g»)» as eigenfunctions is at most 2(a-wr(M) + 1)
where a-wr(M) is the a-weighted rank of the matrix M, given by

a-wr(M) = Z nj + Z mj — m(m — 1)

The indexes n; and m; are related with how singular are the columns and the
rows of the matrix M.

-

@ When M = (M,-,J-)Z._:f) is the symmetric matrix with entries M;; = a;1; for
i+j<m-—1and M;; =0 for i +j > m — 1, the discrete Laguerre
Sobolev inner product reduces

m—1
x*Me ™ Z aisl",  a-wr(M) = ma
i=0

@ When M is diagonal, M = diag(Mo, ..., Mm—1), Mm_1 # 0, we have
a-wr(M) = sa+(m—s)(m+1)—=2 > j, s=[{j:1<j<m M #0}

1<j<m,M;_1=0



The differential operator (of order

Leta =3, m=3and M

1 1 0
1 10
0 0 1
Then Ri1(x), R2(x), R3(x) are given by

Ra(x) (X+1)(X+22)£X —x —24)

3 2 N
Ro(x) = 7(x+1)(x +;<4 14x — 48)
T\’,3(X) .

(x + 4)(x +x3+x — 9x + 30)
60

) satisfying Dq(qn) = P(n)qn is
+ Z Mh
9

Rh(
X X8

n B x' B 17x°
4320 480 144

b)

47x° a
480

N 253x*
720

+5&3
1440

289x°
108

360

«Or «4F»>» «=» «=)»

‘
(6;]
! X

DA
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LAGUERRE POLYNOMIALS: EXPLICIT EXAMPLE

1 1 0
leta=3, m=3andM=|1 1 0].

0 0 1
Then Ri1(x), R2(x), R3(x) are given by

C(x+D(x+ 2)(x* — x — 24)

Ra(x) 24
3, .2 _
Ro(x) = - (x+ 1)(x* + x° — 14x — 48)
24
Ra(x) = (x +4)(x* + x>+ x* — 9x + 30)

60

Examples
0000000e
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LAGUERRE POLYNOMIALS: EXPLICIT EXAMPLE

1 1 0
leta=3, m=3andM=1[|1 1 0
0 01
Then Ri1(x), R2(x), R3(x) are given by

C(x+D(x+ 2)(x* — x — 24)

Ri(x)

24
3, .2 _
Ro(x) = _(x+1)(x* +x” — 14x — 48)
24
Ra(x) = (x+4)(x* + X363— x* — 9x + 30)

The differential operator (of order 18) satisfying Dq(gn) = P(n)gn is
3

d
Dq = P(Dp) + Z Mh(Dp)&Rh(Dp)
h=1
where
P(x) = — x° n x_8 B x_7 B 17x%  47x° B 253x*  55x°3 _ 289x°2 _ &
T 4320 480 144 720 480 1440 108 360 5
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CONCLUSIONS AND EXTENSIONS

Conclusions: Given a classical family of OP’s (p,), with a second-order
difference or differential operator D,, such that D,(p,) = np, (Charlier,
Meixner, Krawtchouk and Laguerre) we can construct a new bispectral
family of OP’s satisfying higher-order difference or differential operators.

[ A.J. Durdn and M. D. de la Iglesia, Constructing bispectral
orthogonal polynomials from the classical discrete families of
Charlier, Meixner and Krawtchouk, to appear in Constructive
Approximation.

[ A.J. Durdn and M. D. de la Iglesia, Differential equations for
discrete Laguerre-Sobolev orthogonal polynomials, to appear in
Journal of Approximation Theory.
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CONCLUSIONS AND EXTENSIONS

Conclusions: Given a classical family of OP’s (p,), with a second-order
difference or differential operator D,, such that D,(p,) = np, (Charlier,
Meixner, Krawtchouk and Laguerre) we can construct a new bispectral
family of OP’s satisfying higher-order difference or differential operators.

[ A.J. Durdn and M. D. de la Iglesia, Constructing bispectral
orthogonal polynomials from the classical discrete families of
Charlier, Meixner and Krawtchouk, to appear in Constructive
Approximation.

[ A.J. Durdn and M. D. de la Iglesia, Differential equations for
discrete Laguerre-Sobolev orthogonal polynomials, to appear in
Journal of Approximation Theory.

Future work: Examples of the form D, with D,(p,) = 6,pn, where 0, is
any function of n. The classical families to study in this case are the
Jacobi (continuous) and Hahn (discrete).
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